Private GeoSocial Networks

Bogdan Carbunar
Florida International University
carbunar@cs.fiu.edu

Radu Sion
Stony Brook University
sion@cs.stonybrook.edu

Rahul Potharaju
Purdue University
rpothara@purdue.edu

Moussa Ehsan
Stony Brook University
mehsan@cs.stonybrook.edu
Geosocial Networks (GSN)

- Foursquare, Gowalla, Facebook Places, SCVNR, ...

Check-In

Check-In

Check-In
Check-Ins

- Register presence at a venue *now*
- User needs to have GPS equipped phone
 - GPS location is transmitted to GSN
 - Presented with places in vicinity
 - Need to choose one
Badges [Foursquare]

- **Location Badge**
 - \(k \) check-ins
 - At the same venue
 - At different venues
 - Adventurer, Explorer, Superstar, ...

- **Mayor**
 - The most check-ins at a venue in the past two months

- **Multi-Player Badge**
 - Simultaneous check-ins with \(k \) other users
 - Swarm, Super-Swarm, Player Please, ...
User Participation. Why?

- Users receive incentives to participate
 - Lufthansa: ticket discounts for Oktoberfest participants
 - SixFlags: mayor receives season pass
 - Ann Taylor: 25% discount to mayors
 - GAP: 25% off for 2nd check-in
 - Starbucks, Pizza Hut, Burger King
 - ...

Problems

1. Privacy: users provide personal information
 - Name and location traces

2. Cheating
 - Location fraud
 - Badge conditions

- Tension between privacy and cheating
In this talk …

- Data Collection and Statistics
- Secure Location Verification
- Private Badging Protocol
- Evaluation
Foursquare vs. Gowalla

- 780,000 Foursquare users
- 143,000 Gowalla users
 - username, location (home city), friends
 - badges
 - # check-ins, # days out, # things done

Foursquare: Distribution of user home cities in the US

Gowalla: Distribution of user home cities in the US
Foursquare Check-Ins

CDF of days-out, check-ins, and things done per user

- 45% of users have 80-950 check-ins
- Several check-ins per day

Scatterplot of check-ins vs days out
Badges vs. Pins

Foursquare: CDF of friends and badges per user

Gowalla: CDF of pins and check-in per user
In this talk ...

- Data Collection and Statistics
- Secure Location Verification
- Private Badging Protocol
- Evaluation
Why Location Verification?

- Cheating is easy
 - Especially when private
 - GPS Cheat (Android)
 - Location Spoofer (iPhone)

- Users have incentives to cheat
 - Claim fake locations (alibi?)
 - Acquire badges without merit
 - Receive rewards for nothing
Secure Location Verification

- Venue-oriented approach
- Venue owners have the most to lose
 - Reward the wrong customers
- Install small equipment inside venue
- Equipment verifies presence of claimed client
- *One-time investment*
Solution: XACT

- **XACT\(V\):**
 - Generate \(T, \Delta T, S_V(T, \Delta T)\)
 - Encode into Quick Response Code (QRC)
- **User reads and decodes QR code**
- **XACT\(V\) generates new QR code**

Diagram:*
- **1.** Generate key pair \(pub_V, priv_V\)
- **2.** \(pub_V\)
- **3.** \(T, \Delta T, S_V(T, \Delta T)\)
- **4.** GSN
 - **Alice**
 - Verify signature, expiration
XACT Implementation

- Client: Google Nexus One @ 1GHz
- XACT_V: BeagleBoard Revision C4 @ 720MHz

- Time to generate QR code (BeagleBoard): 50ms
- Time to read and decode QR code (Nexus One): 190ms @ 20cm
In this talk ...

- Data Collection and Statistics
- Secure Location Verification
- Private and Secure Badging Protocol
- Evaluation
Why Privacy?

- GSN provider learns user (location, time) traces
 - User lifestyle
 - Leak, sell to third parties

When in Amsterdam, Alice likes coffee?

- Pseudonymity insufficient [Golle & Partridge; 2009]
 - Anonymous profiles + additional info \Rightarrow Identity
Private Badge Requirements

1. Private check-ins
 - No anonymous profiles – just as damaging

2. Private badge construction

3. Cheating prevention
 - Location
 - Badge conditions

- Need anonymous channels - anonymizer
Approach

1. Check-In
2. Location Proof
3. Token
4. Check-In/Token
5. Check-In/Token
6. ZK Proof of Token Ownership

GSN
Private Mayors

- Mayorship: highest number of check-ins in
 - Past 2 months
 - At most 1 check-in per day

- GSN generates primes p and q, modulus $n=pq$
 - n is public
 - p and q are secret

- Once per day, GSN generates random t
 - Publish $t^2 \mod n$
 - t is secret
Quadratic Residuosity Assumption

- Given v and $n=pq$
- But not p and q
- Hard to say if there exists x such that
 - $x^2 = v \mod n$
Private Mayors

- During check-in, the user:
 - Proves location – over anonymizer
 - Receives square root t of the day’s $t^2 \mod n$
 - Receives blindly signed nonce

- When user has sufficient check-ins (k) for mayor
 - Present ZK proof of knowledge of k QR roots +
 - k signed nonces – *do not reuse!*
Zero Knowledge Proof (Part I/III)

- The user has a list
 - L = \{t_1, \ldots, t_k\} of square roots
 - Total is m = 60

- GSN provider has
 - T = \{t_1^2 \mod n, \ldots, t_m^2 \mod n\}
Zero Knowledge Proof (Part II/III)

- User runs the following step s times
 - Generate $Y = \{ y_1, \ldots, y_m \}$ and z_1, \ldots, z_k randomly
 - Set $M = \text{permutation } \pi_1 \{ t_1^2 y_1^2, \ldots, t_m^2 y_m^2 \mod n \}$
 - No need to know square roots of T
 - Set $P = \text{permutation } \pi_2 \{ t_1 z_1, \ldots, t_k z_k \mod n \}$
 - Send M and P to GSN

- GSN provider flips coin b and sends to user
 - If $b=0$
 - User sends $Y = \{ y_1, \ldots, y_m \}$ to provider
 - GSN verifies M generated from $T = \{ t_1^2, \ldots, t_m^2 \mod n \}$ and Y
Zero Knowledge Proof (Part III/III)

- User runs the following step s times
 - Generate $Y = \{y_1, \ldots, y_m\}$ and z_1, \ldots, z_k randomly
 - Set $M = \text{permutation } \pi_1 \{t_1^2 y_1^2, \ldots, t_m^2 y_m^2 \mod n\}$
 - Set $P = \text{permutation } \pi_2 \{t_1 z_1, \ldots, t_k z_k \mod n\}$
 - Send M and P to GSN

- GSN provider flips coin b and sends to user

- If $b=1$
 - User sends $A = \pi_2 \{a_1 = z_1^{-1} y_1, \ldots, a_k = z_k^{-1} y_k\}$ to GSN
 - GSN verifies that $(t_i z_i a_i)^2 = (t_i z_i z_i^{-1} y_i)^2$ in M
ZK Proof Conclusions

- If $b=0$, GSN is convinced that M is built from T
- If $b=1$, GSN is convinced that user knows k square roots from M
- Thus, with 50% chance, GSN is convinced that user knows k square roots from T
- The step is repeated s times
 - Chance of user cheating is $1/2^s$
- GSN only sees one side of the proof
 - Both sides will leak the days when the user checked-in
In this talk ...

- Data Collection and Statistics
- Secure Location Verification
- Private and Secure Badging Protocol
- Evaluation
Experiments

1. Is the server the bottleneck?
 - Check-in
 - Mayor verification
 - 16 quadcore Intel Xeon @2.93GHz and 128GB RAM

2. Can a smartphone support ZK proofs?
 - Google Nexus One @ 1GHz
Mayors

- Dependence on modulus size
 - $k = 30$

- Server
 - Check-in cost independent on bit size – 13,000 per sec
 - Mayor verification - 309 ms for 2048 bit keys

- Client: 7s for mayor generation
Mayors (cont’d)

- Proof generation and verification
- Dependence on number of proof sets
- Dependence on number of check-ins per mayor
 - Linear
 - Server verifies few mayors per second
 - Client takes up to 7s to generate proofs

![Graphs showing time vs. number of proof sets and check-ins](image-url)
Conclusions

- GSN tradeoff between privacy and cheating
- Location verification achieved through venue participation
- Private and secure badge/mayor
- GSN is NOT bottleneck
 - Thousands of check-ins per sec
 - Few mayors verifications/s
- Smartphone supports almost 10 mayor verifications/minute
Questions ?