SPICE
Simple Privacy-Preserving Identity-Management for Cloud Environment

Sherman S.M. Chow
Yi-Jun He
Lucas C.K. Hui
Siu Ming Yiu

Applied Cryptography and Network Security (ACNS ‘12)
Session 12: Security and Privacy in Cloud Systems
June 29th, 2012
• Cloud, and Digital Identity Management (DIM)
• Existing DIMs and their Limitations
• Our Goals
• World of Group Signatures
• SPICE!
• Simple Showcase
Moving into the Cloud

- Cloud computing has been envisioned as the next-generation architecture of IT enterprise
 - On-demand self-service
 - Ubiquitous network access
 - Location independent resource pooling
 - Rapid resource elasticity
 - Usage-based pricing
 - Transference of risk
An organization employs the cloud service
Many members belong to this organization
Many cloud service providers

Authentication expected
Threats to Cloud Computing

- Abuse and Nefarious Use of Cloud Computing
- Insecure Interfaces and APIs
- Malicious Insiders
 - “You cannot always trust your cloud provider’s employees.”
- Shared Technology Issues
- Data Loss or Leakage
- Account or Service Hijacking
 - “Identity theft -- it’s not just a consumer problem.”
- Unknown Risk Profile
- [Cloud Security Alliance (CSA), March 2010]
Digital Identity Management
Desirable Properties

- Unlinkability
- Delegatable Authentication
 - Each CSP has its own way
 - Still Unlinkable
 - Useful in Cloud Environment
- Anonymity
- Accountability
- User Centric Access Control
- Single Registration
Bertino et al.’s DIM System

- Registrar stores a set of signatures
 - each sign on a commitment of a user’s attribute
- User first retrieves (some of) them
 - according to CSP’s need
- CSP verifies user’s Zero-Knowledge Proof (ZKP)
- CSP then generates a credential to the user
- User may present this to another CSP
- Mechanism to deal with Heterogeneous Naming
Limitations

- Registrar remains (practically always) online
 - Single point: Scalability and Security
- Signatures are linkable
 - ZKP of signatures? Yes, but stay tuned
- Delegation (of authentication / verification) is not supported
 - Not to say in an unlinkable way
Shibboleth

• Open source reference implementation
 – A similar authentication mechanism
• Single sign-on (~delegatable authentication)
 – CSPs form a federation a priori
 – User authorizes CSP\(_1\) to access CSP\(_2\) on behalf
 – Registrar needs to be online during the access to issues two certificates to each of CSPs
 – Unlinkability is not a concern
Our Goal

- Unlinkability and Delegatable Authentication
- Secure yet Efficient
- Simple
- Privacy-Preserving
- Identity-Management for
- Cloud Environment
Group Signatures

- Group-oriented signatures with anonymity
- A group manager (GM) issues credentials
- Any member can sign for the group
 - remain anonymous within the group
 - signatures are unlinkable
 - but, unconditional anonymity may be abused
- An opening authority can “open” a group signature to reveal its true signer
World of Group Signatures

“Traceable Signatures”
[KTY04]

“Real Traceable Signatures”
[Chow09]

“Double-Trapdoor Anonymous Tag”
[ACHO11]

Efficient Tracing

+ Authorship Claiming

+ Anonymous Tracing

+ Authorship Deniability

Verifier-Local Group Signatures
(tracing)

Group Signatures
(opening)

(Slides Courtesy: Masayuki Abe)
Basic Algorithms

- Setup() \rightarrow public key = pk, secret = (msk, osk)
- UG(msk, id) \rightarrow user secret key sk_i
- Sign(sk_i, m) \rightarrow σ
- Verify(σ, m) \rightarrow “True”/”False”
- Open(σ, osk) \rightarrow id
Additional Algorithms

- $\text{Sign}(sk_i, m_1, m_2, ..., m_n) \rightarrow \sigma$
- $\text{Sign}(\sigma_n, m_{n+1}) \rightarrow \sigma_{n+1}$
- $\text{Hide}(\sigma, m_j, j) \rightarrow \sigma'$
- $\text{Rand}(\sigma) \rightarrow \sigma'$
Simple Mechanism

- Registrar acts as the GM
- Multiples groups / instances of GrpSig
 - Users as the members
 - CSP as the members (more details later)
- Certificate = GrpSig on n attributes
- Authentication = Append message m to cert.
- Hide some blocks aka attributes if needed
- Re-randomize it
Type of Attributes

• Sensitive personal info.:
 – relatively stable
 – a common representation across different CSPs

• Service-specific attributes:
 – CSPs may employ heterogeneous naming

• Irrelevant attributes:
 – e.g., logging in social network (many info) for external location-based services (mainly location)
Heterogeneous Naming

- Considered in Bertino et al.’s work
- Syntactic
 - e.g., ID vs. “Identity”
- Terminological
 - e.g., “email address” vs. “email account”
- Semantic variations
 - e.g., “privacy level” vs. “sharing setting”
- Matching techniques
 - Dictionaries (WordNet 2.1 English Lexical DB)
 - Ontology mapping (Falcon-AO)
Resolving Naming Variations

- Registrar needs to know who are concerned with a selected subset of attributes
 - but not the ontology mapping between all CSPs
- “Related” CSPs form a group
- Append a group signature on the new “name”
- Some initial trust on the source CSP
- Open the signature if necessary
Randomization / Naming Conversion

Sensitive personal info. Service-specific attribute Irrelevant attribute

A_1 A_2 A_3

A'_1 A'_2 A'_3

A_1 A_2 A_3

A_1 A_2 A_3
Attribute-Hiding

Sensitive personal info. | Service-specific attribute | Irrelevant attribute

\[A_1 \quad A_2 \quad A_3 \rightarrow A_1 \quad A_2 \quad A_3 \]
Design of Group Signatures

- Group signature is just a non-interactive zero-knowledge (NIZK) proof of an underlying “regular” signature
- Two-level structures
 - 1st level is user identity (hidden)
 - 2nd level is actual message (by appending)
Our Extensions

- The regular sig. should be re-randomizable
 - E.g., Waters signatures
- The NIZK proofs should be re-randomizable
 - Groth-Sahai proof system
- Extending pk for a hierarchy of msg
 - 2-level to n-level
- Hiding can be achieved like how the 1st level (signing on the user’s ID) is hidden
SPICE for Web Authentication

Client's Web Browser

1. Service request
2. Auth. request
3. Randomized certificate

Source CSP
- Policy Repository
- Naming Management Service
- Request Management
- Vocabulary Conflicts Handler
- Randomized Certificate Verifier GS.Ver()
- Sanitized Certificate Issuer GS.Hide(), GS.Rand()

Receiving CSP
- Policy Repository
- Naming Management Service
- Request Management
- Sanitized Certificate Verifier GS.Ver()

User
- Attribute Record Vocabulary
- Vocabulary Conflicts Handler
- Randomized Certificate Issuer GS.Sign()

Registrar
- Attribute Record Storage
- Credential Issuer GS.UG(), GS.Sign()
Summary of Our Results

• Privacy and security have become a critical concern
 • w/ immense growth in the popularity of cloud computing
• Digital ID. Mgt. (DIM) is a critical component
• We proposed a privacy-aware interoperable DIM system for the cloud
 • solved two open problems left by Bertino et al.
 • (unlinkability and delegatable authentication)
Summary of Our Techniques

- Our scheme relies on the conceptually simple use of extended group signatures
- Most part of the operations can be performed offline
- We remove the need of contacting the registrar before every authentication
 - or storing a large amount of certificates
- We believe the overhead is quite minimal for the privacy concern
- smchow@math.uwaterloo.ca